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Synopsis 

Internal stress levels and values of the activation volume have been evaluated from the kinet- 
ics of stress relaxation in annealed samples of LD and HD polyethylene. The initial deformation 
of the samples was varied, the maximum values amounting to ca. 1%. The temperature of the 
experiments was 24OC for LDPE, and 24O, 50°, and 69OC for HDPE. The internal stress level 
was found to be approximately proportional to the initial deformation and independent of the 
temperature used. Such internal stresses appear to be introduced upon deformation, since per- 
manent stresses had been removed by careful annealing. The activation volume ( u )  was found 
to satisfy the relation uu* c lOkT, where u* is the effective stress, i.e., the difference between the 
applied and internal stress, k is Boltzmann's constant, and T is the absolute temperature. This 
is in good agreement with results reported elsewhere for a wide variety of materials. This rela- 
tion applies primarily to the exponential flow portion of 'the relaxation c.urves, but by a simple 
transformation the power-law region can also be encompassed. 

INTRODUCTION 

It is well known that the analytical tools used for the description of flow in 
polymers and metals differ greatly. Flow measurements in metals are nor- 
mally described in terms of the hypothesis of stress-aided thermal activa- 
tion,1>2 whereas corresponding data for polymers are generally described as 
resulting from relaxation or retardation time ~ p e c t r a . ~  With regard to stress 
relaxation, the variation of stress with time is often of the log t type. Such a 
time dependence corresponds, a t  least formally, either to an activation energy 
linearly diminishing with the applied stress or to a broad (box) distribution of 
relaxation times. Quite naturally, comparisons between materials of differ- 
ent structure and composition are rare, although the literature gives a num- 
ber of indications of certain basic similarities when comparing, for instance, 
metals and amorphous and semicrystalline polymers.P6 

The present paper aims at  presenting experimental results concerning the 
stress relaxation behavior of polyethylene in the low-deformation region, ana- 
lyzed in terms of the theory of stress-aided thermal activation. Special inter- 
est is devoted to the concept of the activation volume and its stress depen- 
dence. With regard to stress, the role of internal stresses is analyzed using 
different methods for their determination. The analysis starts from the well- 
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known fact that the relaxation process consists of two regions, characterized 
by an exponential and a power-type dependence of the flow rate on stress. 
The transition between these two regions is found useful as a means for nor- 
malizing the stress dependence of the activation volume. It will be shown 
that this dependence conforms quantitatively with known data for other 
polymers and  metal^,^*^*^?^ provided that the influence of internal stresses is 
accounted for. 

THEORETICAL BACKGROUND 

Stress-Aided Thermal Activation 

The idea of stress-aided thermal activation is based on the following ex- 
pression:lV2 

13 = -A exp ( -AGIkT)  

where u is the relaxation rate d u l d t ,  with u denoting the stress; AG is the free 
energy of activation assumed to depend linearly on u; k is Boltzmanns con- 
stant; T is the temperature; and A is a constant (preexponential) factor. As- 
suming that the mobile entities, as, for instance, dislocations, can cross the 
potential barrier in the reverse direction as well, the exponential term in eq. 
(1) has to be replaced by sinh ( - A G / k T ) 2 .  

The Activation Volume 

From the stress dependence of the stress rate, the activation volume u can 
be calculated. One then obtains2 

where u* is the effective stress, i.e., the difference between the applied (u) 
and the internal (ui) stress; and p is the hydrostatic pressure. Provided u 
has a constant value, AG decreases linearly with the effective stress, the re- 
sulting relaxation rate being given by 

(3) 

where A’ is assumed to be independent of stress. Similar expressions apply 
also to secondary creep. 

Equation (3) is the normal base for analyzing flow in metals and other crys- 
talline solids.2 The number of papers utilizing this expression for an analysis 
of the flow in polymers is rather 

It is known that, for both polymers and metals, a stress relaxation curve 
plotted in a u(1og t )  diagram consists of two parts.11J2 First, there is a linear 
part at shorter times, where the stress is linear with log t .  This part is de- 
scribed by eq. (3), as & - exp u* is equivalent to u - log t. The second part is 
linear in the log c* (log t )  plot; it can be described by a power-type expression 
of the following form:13J4 

ir = -A’ exp (uu*/kT)  

u = -B(u*)n (4) 
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where the parameters B and n are stress independent. 
known as the power law of flow. Using eq. (2), the value of u becomesll 

Equation (4) is 

u = k T  n/a* (5) 

Within the power-law region, the activation volume consequently changes 
with the actual stress during a relaxation experiment. Contrary to this, the 
value of u ,  within the exponential-law region, depends only on the initial 
stress uo of the relaxation curve, provided T is ~ o n s t a n t . ~  A convenient 
method of calculating u is to take the slope of the linear d o g  t )  portion, 
which equals F = kT/u.ll 

It has been found4 that for solids of widely differing structure and composi- 
tion, the following relation applies: 

UQO* = lOkT (6) 

It is important to note that UO* denotes the dissipated stress and not the ini- 
tial stress. In certain materials, uo and UO* may be equal; in others, a0 has to 
be corrected for the stress urn remaining after infinite time, ag* being equal to 
a0 - urn. 

The Transition Stress Between the Exponential and Power-Law 
Regions 

If the stress relaxation curves and their first two derivatives are continu- 
ous, there must exist a stress value demarcating the transition from the expo- 
nential to the power-law region, according to eqs. ( 5 )  and (6), respectively. 
This transition stress utr is7 

(7) 

The validity of eq. (7) has been confirmed for both polymers and metals.7 
Equation (7) implies that u is constant in the region uo - atr, while it varies 
in inverse proportion to u at stresses lower than at,.. 

(atr - ui)/(ao - ai) = n/10 

The Determination of Internal Stresses 

Apparently, as internal stresses enter the effective stress, which in turn 
governs the kinetics of flow, it is natural to design methods for the determina- 
tion of ai which are based on an analysis of flow curves. Various kinds of in- 
ternal stresses and how to measure and distinguish between them are dis- 
cussed in detail below. 

EXPERIMENTAL 

Samples 

The following grades of polyethylene were used: 
HDPE. Lupolen 6011 L (BASF), density 0.960-0.963 g/cm3, melt index 

LDPE. Union Carbide DFD 4400 (DYNH type), density 0.920 g/cm3, 
4.0-6.0 g/10 min (MFI 190/2). 

melt index 2.0 g/10 min (MFI 190/2), Mu = 9 X lo4. 



2802 KUBAT, RIGDAHL, AND SELDEN 

0.8 

Do 
h 0.6 

Samples of HDPE and LDPE (dimensions 0.5 X 5 X 50 mm) were pro- 
duced by compression molding (165OC, 0.5 MPa, 3 hr). The specimens were 
annealed for 12 hr (HDPE at 12OoC, LDPE at  SOOC) to eliminate residual 
stresses. 

Method 

The device used for the stress relaxation measurements has been described 
earlier.15 The experiments were conducted mainly at room temperature 
(24OC); but with HDPE, also 50' and 69" f 0.2OC were used. The maximum 
deformation of the samples was about 1%. 

. 
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- 

RESULTS 

The Two Regions of Flow in Stress Relaxation 

As pointed out above, the relaxation process can be divided into two re- 
gions, the exponential-law (shorter times) and the power-law regions (longer 
times). Figure 1 shows a typical example of this behavior illustrated with re- 
sults obtained on LDPE and HDPE at 24OC. It can be seen that at an initial 
stress of 13.9 MPa for HDPE and 1.07 MPa for LDPE (strains 0.80% and 
0.49%, respectively), the transition between the two regions of flow occurs 
after approximately 30 sec. 

The latter portion of the curves shown in Figure 1 obeys the power law, eq. 
(41, as evident from the double logarithmic representation in Figure 2. This 
is true of both LDPE and HDPE used here, i.e., compression-molded, isotro- 
pic samples. Earlier, similar results were obtained with highly oriented PE 
samples (extension ratio 6).12 

With regard to metals, it has been discussed at considerable length to what 
extent the two regimes of flow are related.16 We will now show that the ex- 
ponential and power-law portions have, at least formally, a common origin. 
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Fig. 1. Stress relaxation curves for (0) HDPE and (0) LDPE at  room temperature as a(1og t ) 

plots. Initial stress, 13.9 MPa and 1.07 MPa, respectively; strain rate, 1.4 X sec-l. 
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Fig. 2. Log-log representation of effective stress vs. time of the curves shown in Fig. 1. 

Internal Stresses 

The whole concept of internal stress and its role in influencing the flow of 
solids is not especially well understood. It may, therefore, be useful to con- 
sider some basic facts first. 

Figure 3 shows an example of stress relaxation curves obtained with low- 
density polyethylene. As can be seen, the stress does not diminish to zero 
but reaches a certain level, denoted urn, in the limit of long measuring times. 
Now, the ua, value has a direct bearing on the internal stress; urn is simply 
equal to the internal stress value ui entering eq. (4). When the actual stress 
u falls down to the value ui, the effective stress u - ui becomes zero and the 
flow ceases. This obviously happens when u falls to the equilibrium value 

Generally, the following two types of internal stresses may play a role in 
the present context: (a) internal stresses introduced by deforming the sam- 
ple (aid) and (b) residual internal stresses present in the virgin sample due to 
processing conditions etc. (uir).  

Internal stresses induced by a deformation may be assumed to increase 
with the stress (deformation) applied to the sample, while stresses of the lat- 

Urn. 

Fig. 3. Stress vs. log time and stress vs. time for LDPE at room temperature, showing the sig- 
nificance of the equilibrium stress u-. Initial stress, 1.73 MPa; strain rate, 5 X sec-1. 
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Fig. 4. Determination of the internal stress level according to Li from the relaxation curves 
shown in Fig. 1, for LDPE (left) and HDPE (right). 

ter type, i.e., stresses remaining after processing, are likely to remain con- 
stant, This distinction does not include a possible interplay between the two 
types of internal stress. 

For determining the internal stress level, the method illustrated in Figure 
3, that is, the measurement of the equilibrium stress am, can hardly be em- 
ployed in normal practice due to the long measuring times involved. There 
are, on the other hand, methods where the ai level can be determined from 
the course of the initial part of a stress relaxation curve. Li13 has suggested a 
method where the slope of the a(1og t )  curve is determined at  different stress 
values, whereafter the slope is plotted versus the stress. The intercept of the 
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Fig. 5. Induced internal stresses Uid vs. initial stress uo for (0) LDPE at 24OC (left) and HDPE 
at (m) 24"C, (A) 50°C. and (0) 69°C (right). 
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Fig. 6. Induced interna1 stresses Uid vs. initial deformations eo for HDPE at  (m) 24OC, (A) 
5OoC, and (0 )  69OC. 

resulting (straight) line with the stress axis is a measure of the internal stress. 
For natural reasons, the method can only be applied to the power-law portion 
of the relaxation curves. 

Considering the oi value calculated according to Li, it follows from eq. (4) 
that it must be equal to air + aid.  An application of Li's method to HDPE 
and LDPE is shown in Figure 4. The intercept with the a-axis gives ai values 
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Fig. 7. Maximum slope F vs. initial stress uo for (0) LDPE at 24OC (left) and for HDPE at  (I) 
24OC, (A) 5OoC, and (0) 69OC (right). 
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TABLE I 
Mean Values of Exponent n Determined from the Slope of log (5* vs. log t 

Material Temperature, "C n 

HDPE 24 6-7 
50 6 
69 4 

LDPE 24 6 

of 0.21 and 1.4 MPa for LDPE and HDPE, respectively, to be compared with 
a0 values of 1.07 and 13.9 MPa. 

The results of Figure 5 show the approximate linear increase of ai with the 
initial stress a0 for HDPE at varying temperature, indicating that air is zero. 
The constant of proportionality, c, in the relation 

LTid = CUO (8) 

increases with temperature. 
With LDPE, a somewhat different result was obtained, as the Uid(fJ0) rela- 

tionship was not linear. This is probably partly due to difficulties in apply- 
ing Li's method at  low stresses for LDPE. 

The way in which the induced stress aid depends on stress and temperature 
(Fig. 5) suggests the possibility of aid being determined by the deformation 
only, irrespective of the temperature used. Figure 6, relating to HDPE, 
shows that this is approximately true. 

We now proceed to the second method for the determination of an internal 
stress parameter. This method12J7J8 relates to the exponential flow region. 
The maximum (inflexion) slope of the a(1og t )  curves is plotted versus the ini- 
tial stress ao. The intercept of the resulting, usually straight, line with the a0 

axis gives the ai value. Contrary to Li's method, our procedure requires a 
number of relaxation curves to be recorded so that a sufficient number of 
F(a0) points can be plotted. On the other hand, it is always applicable, even 
in cases where Li's method due to an unsufficient curvature of the d o g  t )  
curves cannot be used. I t  can be shown18 that the ai stress parameter emerg- 
ing here gives the deformation-independent part of the total ai level, i.e., the 
residual stress air frozen in during the preparation of the sample. 

What has been said about aid pertains also to a- as illustrated in Figure 3, 
provided air can be ignored. For instance, the variation of aid reflects the 
way in which a- will change when the initial stress a0 is varied. 

Figure 7 shows the slope F, defined as (-dald In t),,,, plotted versus the 
initial stress a0 for LDPE a t  room temperature, and for HDPE a t  three dif- 
ferent temperatures. The results show that the samples used were practical- 
ly free from air (annealed samples). Earlier measurements produced similar 
re~u1ts. l~ The slope of the F(a0) lines diminishes .with increasing tempera- 
ture, which according to eq. (6), is in agreement with the fact that the con- 
stant c in the relation aid = c a0 increases with temperature. 

In general, the two methods for determining the internal stress from stress 
relaxation data thus produce different values. There are, on the other hand, 
practically important instances where they may be equal. For instance, cold- 
drawn samples of polyethylene contain internal stresses of such a magnitude 
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that the deformation induced Uid contribution at  comparatively low deforma- 
tions may be neglected. In such a case, both methods lead to practically the 
same result, that is, they both give the air value.12 This further implies that 
the equilibrium stress urn remains practically independent of the initial stress 

With regard to the influence of internal stress on the kinetics of the relaxa- 
tion process, the ui value entering the effective stress is the total internal 
stress Uid + air = ui, this stress being equal to the equilibrium stress urn. In 
an extensive study of the relaxation behavior of polymers and metals, it  was 
shown that the maximum slope of the d o g  t )  curves was proportional to the 
total dissipated stress, that is, a0 - urn, the constant of proportionality being 
independent of the structure of the sample.15 The relation obtained was 

GO. 

F/(uo - urn) = 0.1 f 0.01 

In the present investigation, the identities of the total ui value (aid + air) 
and the equilibrium stress am were demonstrated by considering the ratio 

where ui has been determined using the method of Li. The value of k ob- 
tained from these experiments was k = 0.10 for HDPE, independent of the 
temperature used. For LDPE at 24OC, the value of k was 0.09. This agrees 
well with earlier findings.15 

The Stress Exponent n in the Power Law 

An important parameter describing the flow in the power-law region is the 
stress exponent n. The value of n can be determined either from the slope of 
plots of (-du/d log t )  versus u or from the slope of the log u*(log t )  curves.12 
Table I summarizes some typical n values. It may be noted that with regard 
to n, there is no differences between LDPE and HDPE a t  room temperature. 
A decrease in the value on n may be noted at  higher temperatures. A similar 
trend has been reported for several meta1s.l 

The Activation Volume 

Figure 8 (left) shows the variation of u with UO* for LDPE and HDPE at 
room temperature, calculated from the exponential-law region, eq. (6), and its 
variation with the actual effective stress u* as determined from the power-law 
region, eq. (5). The value of u increases with temperature in accordance with 
eqs. (5) and (6). In the double-logarithmic plots used, the u(a*) line corre- 
sponding to the power-law region is shifted to the left when compared to the 
u(ao* )  line. The magnitude of this shift is given by n/10, eq. (7). Using the 
n values obtained, cf. Table I, makes it possible to transform the u(a*) and 
u(uo*) data into each other. This has been done in Figure 8 (right). The 
stress dependence of u has been discussed in detail e l~ewhere .~*~ 

When discussing the stress dependence of u ,  it should be remembered that 
the inflexion slope F = (-du/d In t),,, treated in the preceding sections is 
equal to kT/u.  It, therefore, follows from eq. (10) and from the value of the 
constants entering therein that eq. (6) is valid for the PE samples investi- 
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Fig. 8. Log-log representation of activation volume u determined from exponential-law region 
(unfilled markings) and power-law region (filled markings) vs. effective stress u* before (left) and 
after (right) shifting. 

gated. Another important feature of the u(a*) data as presented in Figure 8 
is that they can be transformed into each other irrespective of whether they 
have been determined from the exponential or the power-law region of the re- 
laxation process. 

DISCUSSION 

The two features of the stress relaxation process studied in this paper, that 
is, the internal stresses and the activation volume, are closely related. It has 
been known for some time that eq. (6) is of a rather general type and, within 
rather broad limits, independent of the structure of the material under 
study.2 However, when the stress entering this relation is corrected for inter- 
nal stresses, the scatter between different materials is almost entirely elimi- 
nated and one obtains u u ~ *  = lOkT for the exponential part and uu* = nkT 
for the power-law part of the relaxation curve. 

With regard to internal stresses, the possibility of distinguishing between 
permanent and induced ai components is, no doubt, of interest both for rea- 
sons of practical use and for theoretical conclusions. Rather naturally, this 
distinction holds primarily for the region of low stresses only; a substantial 
increase in stress, involving, for instance, pronounced orientation effects, may 
result in an interaction between the two component Uid and uir. The reason 
why the division has not been used earlier may be associated with the fact 
that measurements of this type have been performed almost exclusively on 
certain engineering metals where the permanent uir component could be very 
largelg and the Uid part very small. For polymers, however, the situation is 
different in that Uid and air may assume comparable values, or, as in the ex- 
amples shown above, Uid may widely exceed uir. To some extent, certain soft 
metals, such as Cd, may behave ~imilarly.~ 

Considering the role played by the stress as flow rate-determining factor, 
one may notice that the exponential dependence expressed in eq. (3) only 
applies to the stress variation during a single relaxation experiment. The ef- 
fect caused by changing the initial stress is entirely different in that this vari- 
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ation results in a linear increase of the flow rate. This is clearly borne out by 
the data presented above and also supported by earlier re~u1ts.l~ The theory 
of stress-aided thermal activation cannot resolve this paradox without re- 
course to relations as eq. (6) prescribing an inverse-type relation between 
stress and activation volume. 

The authors are indebted to the Swedish Board for Technical Development and to the Swed- 
ish Polymer Research Foundation for financial support. 
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